Thunderstorms and rain showers brought much needed drought relief to non-irrigated
crops across Wisconsin over the past week. The much needed precipitation should help
out the dryland sweet corn, snap bean, muck crops, and agronomic crops immensely.
The rain could not have come at a better time as the corn was in tassel and the snap bean
had begun flowering several weeks ago. The rain should also help many vegetable
growers catch up with their irrigation management. There were reports of some areas
receiving over 5” last night, so I hope that missed the vegetable production regions.

I have not seen the potato crop since the week before last. I was at the Potato Association
of America Annual Meetings which were held in Calgary, Alberta, Canada. The
meetings were informative with a number of presentations on various aspects of potato
production, pest management, physiology, storage, and breeding and development. Next
year the meetings are scheduled to be held in Madison, WI, during the middle of July on
the Monona Terrace and Convention Center. This is early notice to the grower
community as the potato industry is certainly welcome to attend and participate in the
meeting.

One of the reports from last week’s meetings was that the North American potato crop is
the smallest planted acreage for several decades. In addition, several parts of the
continent have had excessive precipitation which has flooded out some of the planted
acreage. The result is a strong market for the current potato crop, as most of last year’s
stored crop has been or will be sold shortly.

We really have the first good harvest weather of the year today, with high temperatures
well short of 80 F. A number of fresh market growers sound like they are already
harvesting, so the mild temperatures should help move harvest of the early crop along.
Hopefully, the strong prices continue and allow for a profitable production season.

We are fast approaching the last opportunity for supplemental N fertilization on full
season crops such as Russet Burbank. With the dry growing season, there have been few
leaching events and little need to split N fertilizer applications. Supplemental N should
be based on petiole nitrate tests and be applied within 60 days of crop emergence or
approximately 40 to 45 days prior to vine kill. Optimal petiole nitrate levels vary by
variety so review the table in Extension Publication A3422 for variety specific
information.
Potatoes: Weather conditions are slowly returning to what we expect for late July and with this return to normal come frequent opportunities for leaf wetting. We’ve seen a jump in severity value totals in mid-Wisconsin during the past few days. This tells us that weather conditions are much more favorable for disease development than they’ve been for much of the summer. We need to think about spray coverage and making sure that stems and leaves are protected against the possibility of late blight and the reality of early blight infection. During the past week, several states in both the far west and eastern U.S. reported the appearance of late blight. We have seen no evidence of late blight in Wisconsin or in the surrounding northcentral states at this point in the season. Early blight is progressing slowly. The next three weeks will determine whether this disease becomes an economic problem this growing season.

By this point in the growing season, most growers will have already applied up to three strobilurin sprays and are continuing for the remainder of the season with weekly treatment using mancozeb, metiram, chlorothalonil and possibly mixtures of TPTH (Super Tin) and mancozeb for control of early blight. If late blight appears, there are many options available that we will describe in detail if we have to cross that bridge. Some fields are already being harvested. With minimal disease pressure in these fields, growers have achieved significant savings in their fungicide program this year.

Tomato: Symptoms of Septoria leaf spot are beginning to appear on the lower leaves closest to the soil surface. Lesions are circular, less than 1/8 inch in diameter with tan centers and dark brown borders. Removal of infected leaves when symptoms first appear can help to slow disease spread if the planting is small, but fungicide treatment with Quadris Opti or mixtures of strobilurin fungicide (Amistar, Quadris, Cabrio) and mancozeb or chlorothalonil are very effective in controlling this disease. Fungicide treatment will also help in the control of early blight and fruit anthracnose.

Carrots: Alternaria and Cercospora leaf blight appear to more of a problem this year and continue to spread in the presence of dew, rainfall and irrigation. Weekly treatment with chlorothalonil interspersed with mixtures of chlorothalonil with Amistar, Quadris, Cabrio, Endura or Pristine will help to hold both of these diseases in check.

Soybean Rust: The area where symptoms of rust have been detected continues to slowly expand. The disease has made its way into SE Mississippi where symptoms were observed on a sentinel plot. Thus far, the disease has been detected in Mississippi (sentinel plot), Alabama (soybean field and sentinel plot), Georgia (soybean field and volunteer soybeans) and Florida (kudzu (7 reports) and soybean (1 report)). UW Staff are monitoring 3 field sites in Wisconsin with multiple spore traps and regularly testing trapped residue using PCR technology to detect the presence of the soybean rust pathogen. To date, UW Staff has not identified soybean rust spores in their trapping system. However, during the past week, a private group in Wisconsin tentatively reported a positive detection of rust spores in material from their own spore trapping
network. Further test results of this sample by UW Staff were negative. At the moment there seems to be no good reason to begin spraying Wisconsin soybeans with fungicide.

With the arrival of soybean rust in Mississippi, we are making plans to plant a research trial near Jackson, MS on August 15-16. The field trial will contain close to 90 entries representing a broad array of genetic material of green and dry pea, southern pea, snap bean, lima bean and dry bean. Once planted, we will be periodically assessing the susceptibility of these materials to the soybean rust pathogen. Data from this trial will be helpful in assessing the genetic vulnerability of materials used by our Midwest processing industry.

Current P-Day (Potato Early Blight) and Severity Value (Potato Late Blight) Accumulations for 2005
(http://www.plantpath.wisc.edu/wivegdis/index.htm)

<table>
<thead>
<tr>
<th>Location</th>
<th>Calculation Date</th>
<th>P-Day Total</th>
<th>Severity Value Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antigo emerging 6/1</td>
<td>7/25</td>
<td>407</td>
<td>16</td>
</tr>
<tr>
<td>Antigo emerging 6/8</td>
<td>7/25</td>
<td>351</td>
<td>15</td>
</tr>
<tr>
<td>Antigo emerging 6/15</td>
<td>7/25</td>
<td>290</td>
<td>5</td>
</tr>
<tr>
<td>Grand Marsh emerging 5/15</td>
<td>7/25</td>
<td>493</td>
<td>48</td>
</tr>
<tr>
<td>Grand Marsh emerging 5/20</td>
<td>7/25</td>
<td>465</td>
<td>45</td>
</tr>
<tr>
<td>Grand Marsh emerging 5/25</td>
<td>7/25</td>
<td>426</td>
<td>45</td>
</tr>
<tr>
<td>Hancock emerging 5/18</td>
<td>7/25</td>
<td>502</td>
<td>36</td>
</tr>
<tr>
<td>Hancock emerging 5/25</td>
<td>7/25</td>
<td>450</td>
<td>33</td>
</tr>
<tr>
<td>Hancock emerging 6/1</td>
<td>7/25</td>
<td>403</td>
<td>33</td>
</tr>
<tr>
<td>Plover emerging 5/12</td>
<td>7/25</td>
<td>542</td>
<td>58</td>
</tr>
<tr>
<td>Plover emerging 5/23</td>
<td>7/25</td>
<td>487</td>
<td>51</td>
</tr>
<tr>
<td>Plover emerging 6/1</td>
<td>7/25</td>
<td>425</td>
<td>51</td>
</tr>
</tbody>
</table>